Mathematical modelling of sleep-wake regulation: light, clocks and digital-twins
The join button will be published 30 minutes before the seminar starts (login required).
Anne Skeldon’s background is in dynamical systems and bifurcation theory. Her early research focused on pattern formation and fluid mechanics, particularly the Faraday wave problem. She later shifted towards applications in biology and sociology, serving as a co-investigator on the six-year complexity-science project Evolution and Resilience of Industrial Ecosystems. She is part of the Mathematics of Life and Social Sciences research group and co-leads the cross-faculty Centre for Mathematical and Computational Biology.
Her current research centres on sleep, circadian rhythms, and data science. She collaborates with researchers at the Surrey Sleep Research Centre to develop and analyse mathematical models of sleep–wake regulation—work that has featured in the UK parliamentary debate, “School should start at 10am because teenagers are too tired.” She has a particular interest in the influence of the light environment on sleep, including the potential effects of permanent daylight saving time, and in the use of mathematical models for fatigue risk management.
Abstract
We all sleep. But what determines when and for how long? In this talk I’ll describe some of the fundamental mechanisms that regulate sleep. I’ll introduce the nonsmooth coupled oscillator systems that form the basis of current mathematical models of sleep-wake regulation and discuss their dynamical behaviour. I will describe how we are using models to unravel environmental, societal and physiological factors that determine sleep timing and outline how constructing digital-twins could enable us to create personalised light interventions for sleep timing disorders.