Geometry optimisation of wave energy converters
The join button will be published 30 minutes before the seminar starts (login required).
Dr Emma Edwards is a fluid dynamicist whose research focuses on offshore renewable energy. She specialises in wave–structure interaction for floating bodies, with applications to wave energy and floating offshore wind. Her work examines how the geometry of floating structures influences their hydrodynamic behaviour and the performance of offshore energy devices, using analytical, numerical, and physical modelling.
Emma completed her PhD at MIT, where she developed semi-analytical models to optimise the geometry of floating wave-energy converters for maximum power capture and reduced cost. She continues to work on wave energy while also contributing to multiple aspects of floating offshore wind, including platform design reviews and numerical and experimental modelling. She collaborates closely with colleagues at MIT and the University of Plymouth.
Abstract
Wave energy has the theoretical potential to meet global electricity demand, but it remains less mature and less cost-competitive than wind or solar power. A key barrier is the absence of engineering convergence on an optimal wave energy converter (WEC) design. In this work, I demonstrate how geometry optimisation can deliver step-change improvements in WEC performance. I present methodology and results from optimisations of two types of WECs: an axisymmetric point-absorber WEC and a top-hinged WEC. I show how the two types need different optimisation frameworks due to the differing physics of how they make waves. For axisymmetric WECs, optimisation achieves a 69% reduction in surface area (a cost proxy) while preserving power capture and motion constraints. For top-hinged WECs, optimisation reduces the reaction moment (another cost proxy) by 35% with only a 12% decrease in power. These result show that geometry optimisation can substantially improve performance and reduce costs of WECs.